Identifying protein interaction subnetworks by a bagging Markov random field-based method
نویسندگان
چکیده
Identification of differentially expressed subnetworks from protein-protein interaction (PPI) networks has become increasingly important to our global understanding of the molecular mechanisms that drive cancer. Several methods have been proposed for PPI subnetwork identification, but the dependency among network member genes is not explicitly considered, leaving many important hub genes largely unidentified. We present a new method, based on a bagging Markov random field (BMRF) framework, to improve subnetwork identification for mechanistic studies of breast cancer. The method follows a maximum a posteriori principle to form a novel network score that explicitly considers pairwise gene interactions in PPI networks, and it searches for subnetworks with maximal network scores. To improve their robustness across data sets, a bagging scheme based on bootstrapping samples is implemented to statistically select high confidence subnetworks. We first compared the BMRF-based method with existing methods on simulation data to demonstrate its improved performance. We then applied our method to breast cancer data to identify PPI subnetworks associated with breast cancer progression and/or tamoxifen resistance. The experimental results show that not only an improved prediction performance can be achieved by the BMRF approach when tested on independent data sets, but biologically meaningful subnetworks can also be revealed that are relevant to breast cancer and tamoxifen resistance.
منابع مشابه
A Markov random field model for network-based analysis of genomic data
MOTIVATION A central problem in genomic research is the identification of genes and pathways involved in diseases and other biological processes. The genes identified or the univariate test statistics are often linked to known biological pathways through gene set enrichment analysis in order to identify the pathways involved. However, most of the procedures for identifying differentially expres...
متن کاملA Hidden Spatial-temporal Markov Random Field Model for Network-based Analysis of Time Course Gene Expression Data
Microarray time course (MTC) gene expression data are commonly collected to study the dynamic nature of biological processes. One important problem is to identify genes that show different expression profiles over time and pathways that are perturbed during a given biological process. While methods are available to identify the genes with differential expression levels over time, there is a lac...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملDetecting Protein-Protein Interaction Decoys using Fast Free Energy Calculations
We present a physics-based method for identifying native configurations of protein-protein interactions amongst a set of nearly native decoys (< 2.0 Å Cα RMSD to the native structure) using a fast new method for performing free energy calculations. The method uses Markov Random Fields to encode the Boltzmann distribution for a given complex, and Generalized Belief Propagation to perform the fre...
متن کاملPredicting protein function from protein/protein interaction data: a probabilistic approach
MOTIVATION The development of experimental methods for genome scale analysis of molecular interaction networks has made possible new approaches to inferring protein function. This paper describes a method of assigning functions based on a probabilistic analysis of graph neighborhoods in a protein-protein interaction network. The method exploits the fact that graph neighbors are more likely to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013